Received 7 February 2007

Accepted 26 March 2007

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiu-Hang Wang, Man-Cheng Hu* and Zhang-Qin Yang

School of Chemistry and Materials Science, ShaanXi Normal University, Xi'an 710062, People's Republic of China

Correspondence e-mail: hmch@snnu.edu.cn

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{N}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.027 wR factor = 0.072 Data-to-parameter ratio = 11.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[aqua(1-methyl-1*H*-1,2,3,4-tetrazole-5-thiolato- κ S)sodium]-di- μ -aqua- κ ⁴O:O]

The crystal structure of the title compound, $[Na(C_2H_3N_4S)-(H_2O)_3]_n$, features polymeric chains made up of sodium coordination octahedra $NaS(H_2O)_5$, each of them sharing two μ -H₂O··· μ -H₂O edges with two adjacent octahedra; the chains run along the *a* axis of the crystal structure. All three unsubstituted N atoms of the tetrazole ring are involved in the complex hydrogen-bonding system; however, none of them participate in the coordination of the sodium ion.

Comment

1-Methyl-1*H*-tetrazole-5-thiol (*L*) is a rather interesting and extensively studied compound, which exists either as a thiol or as a thione tautomer. Quite a few transition metal complexes of this ligand have been synthesized and structurally characterized (Nöth *et al.*, 1998; Wang *et al.*, 2006). Its complexes with the main group metals, however, are far more scarce, Ph_3SnL (Rodarte de Moura *et al.*, 1999) and [K(18-Crown-6)]*L* (Cea-Olivares *et al.*, 1995) being the only well documented cases. Both of these complexes have along with the tetrazolethiolate ligand *L* have additional organic ligands.

We report here the structure of the sodium salt of the ligand L in its trihydrated form; the tetrazolethiolate anion is the only organic ligand of the title complex, (I). A view of the asymmetric unit is shown in Fig. 1. The tetrazolethiolate anion coordinates to the Na⁺ cation through its S atom (Table 1).

The Na1 ion has a distorted octahedral environment formed by a terminal water molecule O2, four bridging water molecules O1, O3, O1ⁱ and O3ⁱⁱ [symmetry codes (i): -x, 1 - y, 1 - z; (ii): 1 - x, 1 - y, 1 - z], and atom S1 of the tetrazolethiolate ligand. Each coordination octahedron shares common O1···O3 and O1ⁱ···O3ⁱ edges with each of the two adjacent octahedra, thus producing infinite chains running along the *a* axis of the crystal structure (Fig. 2). Similar chains of coordination octahedra of Na⁺ ions were found in the

© 2007 International Union of Crystallography All rights reserved

Figure 1

The asymmetric unit of the title compound with atomic labeling. Displacement ellipsoids are plotted at the 50% probability level.

Figure 2

Part of the polymeric chain parallel to the *a* axis viewed down the *b* axis; H atoms have been omitted for clarity.

structure of sodium carboxynitrobenzoate tetrahydrate (Guo, 2004). In the crystal structure of the title compound, the chains are further linked into complex three-dimensional network via the O-H···N bonds, involving each of the three unsubstituted tetrazole N atoms (Table 2). It is noteworthy that none of the tetrazole N atoms participate in the coordination of the Na1 cation.

The Na1–O distances range from 2.3353 (15) Å to 2.4851 (14) Å with a mean value of 2.4293 Å. The C-N and N-N bond lengths are very close to those found in the dimeric free ligand (Cea-Olivares et al., 1995). The C-S bond length measuring 1.7133 (14) Å lies in the range between the values for single [1.817 (5) Å] and double [1.555 (1) Å] C-Sbonds (Dean, 1999), corresponding to partial π -bond character (Trinajstic, 1968; Huber et al., 1982).

Experimental

To a solution of 1-methyl-1*H*-tetrazole-5-thione (10 mmol, 1.161 g) in 60 ml of doubly-distilled water, a solution of an equimolar amount (10 mmol, 0.400 g) of sodium hydroxide in 40 ml of doubly-distilled water was added dropwise at room temperature. After vigorous stirring for 4 h, the resulting mixture was evaporated in vacuo to a volume of about 20 ml and filtered hot. The filtrate was then set aside for crystallization at room temperature. Three weeks later, lightyellow crystals of the title compound suitable for X-ray analysis were isolated

Crystal data

$Na(C_2H_3N_4S)(H_2O)_3]$	$\gamma = 96.589 \ (1)^{\circ}$
$M_r = 192.18$	$V = 416.67 (8) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
= 6.4420 (7) Å	Mo $K\alpha$ radiation
P = 7.0072 (8) Å	$\mu = 0.41 \text{ mm}^{-1}$
= 9.7713 (11) Å	T = 296 (2) K
$u = 105.519 \ (1)^{\circ}$	$0.42 \times 0.39 \times 0.30 \text{ mm}$
$B = 97.098 \ (1)^{\circ}$	

2105 measured reflections

 $R_{\rm int} = 0.013$

1463 independent reflections

1401 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004)

 $T_{\min} = 0.848, T_{\max} = 0.889$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	H atoms treated by a mixture of
$wR(F^2) = 0.072$	independent and constrained
S = 1.00	refinement
1463 reflections	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
126 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$
6 restraints	

Table 1

Selected geometric parameters (Å, °).

Na1-O1	2.4225 (14)	Na1-O3 ⁱⁱ	2.4851 (14)
Na1-O2	2.3353 (15)	Na1-S1	3.0163 (8)
Na1-O3	2.4493 (14)	S1-C5	1.7133 (14)
Na1-O1 ⁱ	2.4543 (13)		
O2-Na1-O1	92.10 (5)	O3-Na1-O3 ⁱⁱ	85.57 (5)
O2-Na1-O3	94.87 (6)	O1 ⁱ -Na1-O3 ⁱⁱ	99.43 (5)
O1-Na1-O3	100.02 (5)	O2-Na1-S1	98.58 (5)
O2-Na1-O1 ⁱ	172.45 (6)	O1-Na1-S1	84.02 (3)
O1-Na1-O1 ⁱ	81.04 (5)	O3-Na1-S1	165.82 (4)
O3-Na1-O1 ⁱ	83.29 (5)	O1 ⁱ -Na1-S1	83.94 (3)
O2-Na1-O3 ⁱⁱ	87.70 (5)	O3 ⁱⁱ -Na1-S1	90.47 (3)
O1-Na1-O3 ⁱⁱ	174.40 (5)		

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Table 2		
Hydrogen-bond geometry	(Å, '	°).

$\overline{D-\mathrm{H}\cdot\cdot A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} 02 - H2A \cdots S1^{iii} \\ 02 - H2B \cdots N2^{iv} \\ 03 - H3B \cdots N3^{v} \\ 03 - H3A \cdots S1^{i} \\ 01 - H1B \cdots N1^{i} \\ \vdots \end{array}$	0.822 (10)	2.560 (12)	3.3632 (16)	166 (3)
	0.814 (10)	2.298 (15)	3.084 (2)	163 (4)
	0.813 (10)	2.225 (13)	3.0075 (18)	162 (2)
	0.813 (10)	2.751 (17)	3.4769 (14)	150 (3)
	0.822 (10)	1.998 (10)	2.8123 (18)	171 (2)

Symmetry codes: (i) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 2, -z + 1; (iv) x, y, z - 1; (v) x, y - 1, z - 1; (vi) -x, -y + 2, -z + 1.

Methyl H atoms were placed in idealized positions and were included in the refinement in the riding model approximation with $U_{\rm iso}$ fixed at $1.5U_{\rm eq}(\rm C)$ (C–H = 0.96 Å). H atoms associated with the water molecules were located in a difference Fourier map and refined isotropically with O-H bond lengths restrained to 0.82 (1) Å.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XSHELL* (Bruker–Nonius, 2004) and *DIAMOND* (Brandenburg & Brendt, 2001); software used to prepare material for publication: *SHELXTL* (Bruker, 2003).

Financial support from the National Natural Science Foundation of China (No. 20471035) is gratefully acknowledged.

References

- Brandenburg, K. & Brendt, M. (2001). *DIAMOND*. Version 2.1. Crystal Impact GmbH, Bonn, Germany.
- Bruker (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). SADABS. Version 2004/1. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2005). SAINT. Version 7.34A. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). APEX2. Version 2.1-0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker–Nonius (2004). XSHELL. Version 4.02. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.
- Cea-Olivares, R., Jiménez-Sandoval, O., Hernández-Ortega, S., Sandez, M., Toscano, R. A. & Haiduc, I. (1995). *Heteroat. Chem.* 6, 89–97.
- Dean, J. A. (1999). Lange's Handbook of Chemistry, 15th ed. Section 4, p. 38. New York: Mcgraw-Hill Book Co.
- Guo, M.-L. (2004). Acta Cryst. E60, m1684-m1685.
- Huber, C. P., Ozaki, Y., Pliura, D. H., Storer, A. C. & Carey, P. R. (1982). *Biochemistry*, **21**, 3109–3115.
- Nöth, H., Beck, W. & Burger, K. (1998). Eur. J. Inorg. Chem. 1998, 93-99.
- Rodarte de Moura, C. V. P. G., de Sousa, A., Silva, R. M., Abras, A., Hörner, M., Bortoluzzi, A. J., Filgueiras, C. A. L. & Wardell, J. L. (1999). *Polyhedron*, 18, 2961–2969.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Trinajstic, N. (1968). Tetrahedron Lett. 12, 1529-1531.
- Wang, Y. L., Shi, Q., Bi, W. H., Li, X. & Cao, R. (2006). Z. Anorg. Allg. Chem. 632, 167–171.